Essential Chemical Engineering Interview Questions & Answers:
1. Is there any way to remove residual product left in pipes after a batch operation?
OEG Company in Osaka, Japan commercialized a device called Pushkun that runs through pipes and "pushes" out left over product. The system is particularly valuable in batch operations where product recovery is chief concern. The manufacturer claims that at one installation, the system paid for itself in four months through product recovery. System costs depend on the scale of the system, but are typically around $10,000 US (1998).
2. What particle sizes are electrostatic precipitators used to remove?
A. Duprey conducted testing on an electrostatic precipitator in a pulp mill. The results were published in a National Air Pollution Control Administration report called "Compilation of air Pollutant Emission Factors”.
3. What are flameless oxidizers?
Flameless oxidizers are used to treat volatile organic compounds (VOC) and liquid organic streams. Traditionally, these types of streams were combusted to break down the molecules. The disadvantage of this treatment method was the formation of NOx. Flameless oxidizers use electrically heated ceramic packing and a high velocity introduction system to initiate the destruction of the organic compounds into carbon dioxide and water. Once this oxidation reaction begins, it continues via self-perpetuation. Capital cost for such systems are usually about 25% less than traditional combustion systems and capacities can range from 250 to 40,000 SCFM (standard cubic feet per minute). Thermatrix Inc. is the pioneer for this technology. Visit their website below.
4. Are there any special considerations to be taken into account for combusting ammonia?
The heat of combustion of ammonia is 8,000 Btu per pound. There is no reason why it cannot be combusted with or without auxiliary fuel. However, ammonia combustion does result in a flue gas having a high concentration of NOx and the design of a combustion chamber for ammonia requires special conditions to mitigate or reduce the level of NOx emissions.
5. What are some common causes of control valve noise?
If you have excessive pressure drop across the control valve and the downstream pressure is low enough to cause the liquid to flash, a great deal of noise in the control valve can result. Excessive damage can be done as well. This is a common problem at low flows. Review the design information on the valve and the process to see if low flow may be the problem. If the valve is incorrectly sized the noise will be apparent from the day of installation. If flows have recently been changed, the valve may have been designed correctly at the time, but is too large for current operation.
This question depends on many factors. It sounds like the tower is small. A rule of thumb suggests that the tower will see an evaporation loss of about 0.1% of the circulation flowrate for each Fahrenheit degree of cooling. Other losses include drift losses (probably very small for your tower) and blow down. Blow down is simply a purge of tower water to prohibit the buildup of solids.
CFM and SCFM are both measures of flow rate. CFM might refer to either the flow rate of a gas or a liquid, whereas SCFM refers only to the flow rate of a gas. The same mass flow rate of a gas (i.e., lbs/minute) is equivalent to various volumetric flow rates (i.e., CFM) depending upon the gas pressure and temperature. Thus, when gas flow rates are specified, it is very important to specify at what pressure and temperature the gas was measured. When the gas flow rate is specified as SCFM, it means that the flow rate was measured at a set of standard pressure and temperature conditions.
In the USA, the most common set of standard conditions used in industry is 60 degrees Fahrenheit and one atmosphere of pressure. Note that we have stressed most common, because there are other standard conditions that may be used. It is always best to spell out what standard conditions are being used (i.e., 1200 SCFM at 60 degrees F and 1 atmosphere pressure). When gas flows are expressed simply as CFM, the reader is can only speculate as to what gas temperature and pressure apply to that flow rate ... and, because of that, the CFM flow rate cannot be converted to a mass flow rate
8. What is the maximum recommended velocity for steam in a plant pipe network?
High-pressure steam should be limited to about 150 ft/s and low-pressure steam should be limited to about 100 ft/s.
9. What is the maximum recommend pipe velocity for dry and wet gases?
For dry gases, you should design for a velocity of about 100 ft/s while wet gases should be limited to about 60 ft/s.
10. How instrument air is continually supplied in process plant?
The instrument air supply is guaranteed by dedicated air supply with -40 oC dew point. Apart from this there is about 20 to 30 minutes of back up provided for emergencies like power failure, instrument air-generation failure, etc.
https://InterviewQuestionsAnswers.ORG.